Realtime cerebellum: A large-scale spiking network model of the cerebellum that runs in realtime using a graphics processing unit

نویسندگان

  • Tadashi Yamazaki
  • Jun Igarashi
چکیده

The cerebellum plays an essential role in adaptive motor control. Once we are able to build a cerebellar model that runs in realtime, which means that a computer simulation of 1 s in the simulated world completes within 1 s in the real world, the cerebellar model could be used as a realtime adaptive neural controller for physical hardware such as humanoid robots. In this paper, we introduce "Realtime Cerebellum (RC)", a new implementation of our large-scale spiking network model of the cerebellum, which was originally built to study cerebellar mechanisms for simultaneous gain and timing control and acted as a general-purpose supervised learning machine of spatiotemporal information known as reservoir computing, on a graphics processing unit (GPU). Owing to the massive parallel computing capability of a GPU, RC runs in realtime, while reproducing qualitatively the same simulation results of the Pavlovian delay eyeblink conditioning with the previous version. RC is adopted as a realtime adaptive controller of a humanoid robot, which is instructed to learn a proper timing to swing a bat to hit a flying ball online. These results suggest that RC provides a means to apply the computational power of the cerebellum as a versatile supervised learning machine towards engineering applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

GPU-based implementation of a cerebellar spiking network model for realtime robot control

We implemented a large-scale cerebellar cortical model composed of more than 100,000 spiking neuron units on a Graphics Processing Unit (GPU). We carried out computer simulations of the model in realtime. We adopted the model to online learning of timing for a humanoid robot. Keywords— Realtime Simulation, Spiking Network Model, GPU, Cerebellum, Robot Control

متن کامل

Real-World-Time Simulation of Memory Consolidation in a Large-Scale Cerebellar Model

We report development of a large-scale spiking network model of the cerebellum composed of more than 1 million neurons. The model is implemented on graphics processing units (GPUs), which are dedicated hardware for parallel computing. Using 4 GPUs simultaneously, we achieve realtime simulation, in which computer simulation of cerebellar activity for 1 s completes within 1 s in the real-world ti...

متن کامل

Streaming parallel GPU acceleration of large-scale filter-based spiking neural networks.

The arrival of graphics processing (GPU) cards suitable for massively parallel computing promises affordable large-scale neural network simulation previously only available at supercomputing facilities. While the raw numbers suggest that GPUs may outperform CPUs by at least an order of magnitude, the challenge is to develop fine-grained parallel algorithms to fully exploit the particulars of GP...

متن کامل

An Efficient Simulation Environment for Modeling Large-Scale Cortical Processing

We have developed a spiking neural network simulator, which is both easy to use and computationally efficient, for the generation of large-scale computational neuroscience models. The simulator implements current or conductance based Izhikevich neuron networks, having spike-timing dependent plasticity and short-term plasticity. It uses a standard network construction interface. The simulator al...

متن کامل

A Study of Speed of the Boundary Element Method as applied to the Realtime Computational Simulation of Biological Organs

In this work, possibility of simulating biological organs in realtime using the Boundary Element Method (BEM) is investigated. Biological organs are assumed to follow linear elastostatic material behavior, and constant boundary element is the element type used. First, a Graphics Processing Unit (GPU) is used to speed up the BEM computations to achieve the realtime performance. Next, instead of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural networks : the official journal of the International Neural Network Society

دوره 47  شماره 

صفحات  -

تاریخ انتشار 2013